|~ AD-AO43 362 STANFORD UNIV CALIF DEPT OF COMPUTER SCIENCE F/6 9/2
COMPLEXITY OF COMBINATORIAL ALGORITHMS. (U) !
APR 77 R E TARJAN N00014=76=C=0668
UNCLASSIFIED STAN=CS=77=609 NL

A . .

(-
o

1= 1z

—
N
)}

5

28[58
315 “\3”22

22

=

==

NATIONAL BUREAU OF STANDARDS

MICROCOPY RESOLUTION TEST CHART

o\, -
: (
G
\ o
| <
; COMPLEXITY OF COMBINATOR IAL ALGOR ITHMS
[
Robert E. Tarjan
" STAN-CS-77-609 DDC
APRIL 1977 W22 P Mz
.7 AG 22 1977
) STV IS
™
COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY
-\
‘ >
o
o,
%
Pl
f 0
£ =
| =5
-=; [oo

-~

Unclagsified 2l e
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

(= READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
/ 1. REPQRT NUMBER 2. GOVT ACCESSION.NO. Recrmsmlemmumslin e
¢J / ’ 4) ‘
f PAN-CS -77-660 | 4/ /)
A i bf)), 7 / / .00k /7 /.A/
Y 4. TITLE (and Subtitle) 3 TYPE QF REPORT & PERIOD CONVERED
| ——y
;f. T L e APREAL e L e) technical, April 197f———"
{ (7 OMPIL.EXYTTY (MmO
\\v’{ _&_J\.)[d LEXITY \)‘ LOMB_LNAIO RIAL ALUO[\lL‘“:M.u / 6. PERFORMING ORG. REPORT NUMBER
! == e STAN-CS=T77-009
7. AUTHOR(S) 7" 8. CONTRACT OR GRANT NUMBER(s)
/‘ el ' N . el
/6},»t£§ PR ‘ S Arools L 7 e MOV
Rober ./Tarjan ! NOOO14-T76-C-0668
e / = g~ - 277
%M__-—'.-........... cmim——— / 1/N m__‘éi — /- /&
9. PERFORMING ORGANIZATION NAME AND ADDRESS —~— 10, ig%gw&&ﬁmﬁftg.?ﬁﬁggg. TASK
“ oo 3 7 . . U NU
Stanford University
Computer Science Department
Stanford, Ca. 94305
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Office of Naval Research /! Apr¥l ¥O77 f
Department of the Navy | [GanowEER GES
Arlington, VA 22217 OO
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CLASS. (of this report)
ONR Representative: Philip Surra e
- o S SRS e Lo : S p——— inclassified
Durand Aeronautics Bldg., Rm. 165 / ’*7
Stanford University / A 6 - } T5a DECLASSIFICATION DOWNGRADING |
QA+ anf _/V—-——;— SCHEDULE
Stanford, Ca. 94305)
16. DISTRIBUTION STATEMENT (of this Report)
Releasable without limitations on dissemination
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)
18. SUPPLEMENTARY NOTES
19 KEY WORDS (Continue on reverse side if necessary and identify by block number)
20, ABSTRACT (Continue on reverse side {f necessary and identify by block number)

[his paper examines recent work on the complexity of combinatorial
algorithms, highlighting the aims of the work, the mathematical tools used,
and the important ru;ulaw. Included are sections i;uc.uAix ways to measure
the complexity of an algorithm, methods proving ‘} certain problems
are very hard to solve, tools useful in the design of good algorithms, and
recent improvements in algorithms for solving ten representative problems.

, I'he f'inal section suggests some directions for future research..
FORM
DD jan 75 1473 ED'TION OF ! NOV/GS TR TE Unclassified
/ SECURITY CLASSIFICATION OF THIS PAGE (When Data lntered

L . 4

N

—

/

Complexity of Combinatorial Algorithmcd/

.
Robert Endre Tarjan——/

Computer Science Department
Stanford University
Stanford, California 94305

Abstract.

This paper examines recent work on the complexity of
combinatorial algorithms, highlighting the aims of the work, the
mathematical tools used, and the important results. TIncluded are
sections discussing ways to measure the complexity of an algorithm,
methods for proving that certain problems are very hard to solve,
tools useful in the design of good algorithms, and recent improvements
in algorithms for solving ten representative problems. The final section

suggests some directions for future research.

L" i 02 ‘.'.
\\y |

yeel ®

*

i Based on a talk presented at the Symposium in Honor of the 30th
Anniversary of the Office of Naval Research, SIAM 1976 Fall Meeting,
Atlanta, Georgia, October 18-20, 1976.

:/

Research partially supported by National Science Foundation grant
MCS75-22870 and by the Office of Naval Research contract
NOOO1L-75-C-0668. Reproduction in whole or in part is permitted
for any purpose of the United States Govermment.

i Introduction.

In recent years there has been an explosive growth in research
dealing with the development and complexity analysis of combinatorial
algorithms, While much of this research is theoretical in nature, many
of the newly discovered algorithms are very practical, These algorithms
and the data manipulation techniques they use are valuable in both
combinatorial and numeric computing. Some problems which at first
glance are entirely numeric in character require for their efficient
colution not only the proper numeric techniques but also the proper choice of
data structures and of data manipulation methods. An example of such a
problem is the solution ot a system of linear equations when the coefficient
matrix contains mostly zeros (Tewarson [1973]).

In this paper I shall survey some of the recent results on
complexity of combinatorial algorithms, examine some of the ideas behind
them, and suggest possible directions for future research. Section 2 of
the paper discusses ways to measure the complexity
of algorithms. Though several different measures are useful in different
circumstances, I shall concentrate upon one measure, the worst-case
running time of the algorithm as a function of the input size. Section 3
discusses techniques for proving that certain combinatorial problems are
very hard to solve. The results in this area are a natural extension,
perhaps more relevant for real-world computing, of the incompleteness 1
and undecidability results of G8del, Turing and others. Section I presents
a small collection of general techniques which are useful
in the construction of efficient combinatorial algorithms. Section 5

discusses efficient algorithms for solving ten representative problems.

T N - IP—
cm2=< KGHGES I8
o F NIty
|~ Lig Wes g
|= &2 a S - :
1 {7 =g ']
= 8N £:
5 A%
: _ -
e e = & &
1%]| ' € [N

These problems illustrate the importance of the methods in Section 4, and

% they include some, but certainly not all, of the combinatorial problems

for which good algorithms are known. Section 6 suggests some unsolved

problems and directions for future research. The appendix contains a

list of terminology for those unfamiliar with graph theory.

2 Machine Models and Complexity Measures.

In the early years of ccmputing (before computer science was
recognizable as an academic discipline), an individual confronted with a
computational problem was likely to proceed in the following way. He or
she:/ would ponder the problem for a while, formulate an algorithm for
its solution, and write a computer program which would hopefully implement
his algorithm. To test the algorithm's correctness, he would run the
program on several sets of data, "debugging" the program until it
produced correct output for each set of sample input. To test the
algorithm's efficiency, he would measure the time and storage space
needed by his program to process the sample data, fit these measurements
to curves (by eye, by least-squares fit, or by some other method), and
claim that these curves measured the efficiency of the algorithm.

The drawbacks of this empirical approach are obvious. The development
of very large programs, such as compilers and operating systems, requires
a much more systematic method of checking correctness. This need has led
computer scientists to devise methods for proving the correctness (and
other properties) of programs (Floyd [1967], Manna [19€9], Hoare [1969]).
These methods use mathematical induction to establish that certein invariant
relations hold whenever certain points in the program are reached. Computer
scientists have also developed methods (such as "structured programming')
for constructing easy-to-understand and easy-to-verify programs (Dahi,
Dijkstra, and Hoare [1972]), and have formulated new programming languages
to make these methods easy to apply (Wirth [1971]). The thrust of this
research is to demonstrate that devising an algorithm and devising a proof

of its correctness are inseparable parts of tl.c same process. Perhaps

*
-/ Henceforth I shall use "he" to denote any individual, male or female.

the foremost advocate of this point of view is Dijkstra (Dahl, Dijkstra
% and Hoare [1972]; Dijkstra [1976]).

Measuring efficiency by means of empirical tests has the same
deficiency as checking correctness empirically; there is no guarantee
that the result is reproducible on new sets of data. If an informed
choice is to be made between two algorithms for solving the same problem,
more systematic information about the algorithms' complexity is needed.
To be most useful, this inTormation should be machine-independent; good
algorithms tend to remain good even if they are expressed in different
programming languages or run on different machines, Furthermore the
measure should be both realistic and susceptible to theoretical study.

Complexity measures are of two kinds: those which are

static (independent of the size and characteristics of the input data)
and those which are dynamic (dependent upon the input data). A typical
static measure is program length, Program length in some sense measures
the simplicity and elegance of an algorithm (an algorithm with a short
program and short correctness proof is simple; an algorithm with a short
program and long correctness proof is elegant), This measure is most
appropriate if programming time is important or if the program is to be
run infrequently.

Dynamic complexity measures provide information about the resource
requirements of the algorithm as a function of the characteristics of

the input data. Typical dynamic measures are running time and storage

space. These measures are appropriate if the program is to be run often.
Running time is usually the most important factor restricting the size of
problems which can be solved by computer; most of the problems to be

examined in Section 5 require only linear space for their solution,

some

However, for problems with linear-time algorithms, storage space may
be the limiting factor. Storage space has been used as a measure in
proofs of the computational intractability of certain problems (see
Section 2), but most efficiency studies emphasize running time.

Dynamic measures require that we specify the input data. One
possibility is to assume that the data for a given problem size is the
worst possible, A worst-case measure of running time or storage space
as a function of problem size provides a performance guarantee; the
program will always require no more time or space than that specified
by the bound. A worst-case measure is in this sense not unlike a proof
of program correctness.

For some algorithms a worst case bound may be overly pessimistic;
for instance, the simplex method of linear programming (Dantzig [1963]),
which has an exponential worst-case time bound (Klee and Minty [1972]),
seems to run much faster than exponential on real-world problems (Dantzig
[1963]). 1In such cases an "average" case or "representative" case may
give a more realistic bound. For certain problem domains, such as sorting
and searching (Knuth [1973]), average case analysis is almost always more
realistic than worst-case analysis, and in these areas much average-case
analysis has been done. However, average-case analysis has its drawbacks.
It may be very hard to choose a good probability measure. For instance,
assuming that different parts of the input data are independently
distributed may make the analysis easier but may be an unrealistic
assumption; furthermore even a relatively simple algorithm may rapidly
destroy the independence. With average-case analysis one additionally

runs the risk of being surprised by a very rare but very bad set of input

data.

Any concrete complexity measure must be based on a computer model. One

~
M

, which

possible choice is the random access machine (Cock and Reckhow [1€

is an abstraction of a general-purpose digital computer. The memory of such
a machine consists of an array of storage cells, each able to hold an
integer. The storage cells are numbered consecutively from one; the number
of a storage cell is its address. The machine also has a fixed finite set
of registers, each able to hold an integer, (For problems involving real
numbers, we allow storage cells and registers to hold real numbers.) In
one step, the machine can transfer the contents of a register to a stc
cell whose address is in a register, or transfer to a register the contents
of a storage cell whose address is in a register, or perform an arithmetic
operation on the contents of two registers, or compare
registers. A program of fixed finite length specifies the sequence of
operations to be carried out. The inital configuration of memory

e

represents the input data, and the final configuration of memory represents

the output. The details of this machine model are unimportant in that
reasonable variations do not affect running time or storage space by more
than a constant factor.

A random access machine is sequential; it carries out one step at
a time. Much work has been done on the computational complexity of
parallel algorithms, but I shall not discuss this work here.

The random-access machine model provides a useful tool for
realistically measuring the efficiency of particular algorithms,
but it has serious drawbacks for lower bound studies. Since a
single storage cell can hold an arbitrarily large integer, it ic
possible on a random access machine to carry out computations in

parallel by encoding several small numbers into one large one, One

|
|
!
I

‘an avoid this problem by assuming that the time required for an integer
yperation is proportional to the length of its binary representation

Y

(Aho, Hoperoft, and Ullman [1974]), or by requiring that all integers be

bounded in absolute value by some constant times the size of the input data.

Random-access machines are extremely powerful; in particular, they
can perform arithmetic on addresses., This gbility is useful for representi:

multidimensional arrays (Knuth [1962]), performing radix sortc (Knuth |

storing hash tables (Knuth [1973]), and the like. However, determining the
theoretical limits of this capability seems to be a hard problem.
Kolmogorov [1953], Kolmogorov and Uspenskii [1963], Knuth [1958],

Sch8nhage [1973], and Tarjan [1977] have proposed machine models in which

access to memory is by explicit reference only, and no address arithmetic

is possible., I shall call such a machine a linked memory machine. These

-

machines accurately model the capabilities of list-processing languages
such as LISF and the list-processing features of general-purpose languages
such as Algol-W and PL/1, and they appear to be more amenable to analysis

than random-access machines.

Another very simple machine model, the Turing machine (Turing [193(-7]

has been used in many theoretical studies. A Turing machine has a memory

consisting of a tape. The tape is divided into cells, eacl
holding one of a finite number of symbols. The machine possesses

a finite internal memory and a read/write head which can scan one tape

cell at a time. In one step; the machine can read a tape cell, write a
new symbol in the cell (erasing what was there previously), move the

read/write head one cell forward or backward on the tape, and change

the internal memory state, The decision as to what to do at each ctej
depends only on the current internal memory state and the contents of

the tape cell being read; this decision is encoded for each internal

g

state and each tape symbol in a decision table which forms the program

of’ the machine,

Turing proposed his machine model in 1936, before electronic digital
computers existed; he was attempting to model computational processes in
the abstract, without reflerence to any real computer. Though Turing's
model is inadequate for a large part of concrete complexity research, its
simplicity and the fact that any random access machine can be simulated
on a Turing machine with only a polynomial blow-up in running time makes
the Turing machine extremely useful for studying very difficult computational
tasks., It is also valuable for studying problems where tapes are the
ctorage device, as for instance in tape sorting (Knuth [1973]).

In lower bound studies the focus is often on some critical operation;

one counts in the running time occurrences only of that critical operation.
For instance, in sorting and selection problems it is useful to count only
comparisons (or general binary decisions), measuring the complexity of a
problem by the depth of a decision tree for it (Aho, Hopcroft, and Ullman
[1974]). 1In arithmetic and algebraic problems, it is useful to count only
arithmetic operations and to assume that no decisions are made; i.e., that

the computations performed are independent of the input data (for a particular
problem size). In this case one measures the complexity of a problem by the

length of a straight-line program (Aho, Hoperoft, and Ullman [1374]). 1In

other situations memory accesses may be the critical operations.
In this paper I shall use worst-case running time on a random-access
machine as a measure of algorithmic complexity. This measure is useful
and realistic for a wide range of combinatorial problems., I shall
ignore constant factors in running time, since such constant factors depend

upon the exact model of computation, they are often hard to compute, and

s

they tend, at least for large-sized problems, to be washed out by
asymptotic growth rates. To indicate functional relationships, I

shall use the following notation, If f and g are functions of n ,

" f(n) is 0(g(n)) " means f(n) < cg(n) for all n , where c is a
suitable positive constant, and " f(n) is Q(g(n)) " means f(n) > cg(n)

for all n , where c is a suitable positive constant.

|
l

5e Complexity of Intractable Problems.

Inspired by Hilbert [1926€] and other formalists, mathematicians of the
early twentieth century hoped to find a formal system which would be adequate
for expressing and veryifying all mathematical truths. These hopes were
dashed by GBdel [1931], who in his famous incompleteness theorem demonstrated
that no method of proof could be both subject to mechanical verification
and powerful enough to prove all theorems of elementary arithmetic. Their
interest in the foundations of mathematics prompted logicians to cafront
the question, "What is mechanical verification?" or equivalently, "What is
an algorithm?". Church [1936], Kieene [1936], Post [1936], Turing [193¢-7]),
and others provided formal definitions of an algorithm. These definitions
are superficially different but provably equivalent, in the sense that if
a problem is solvable according to one definition of an algorithm, then

it is solvable according to all the other definitions. This rcbustness

of the notion of an algorithm is usually stated as Church's thesis: any

algorithm (in the informal sense) can be expressed as a Turing machine,
and any Turing machine expresses an algorithm,

Once a formal definition of an algorithm existed, it was possible

for mathematicians to study the power of computation. Turing proved that
no algorithm existed for determining whether a given Turing machine with a
given input will ever halt. Other researchers discovered a number of such

undecidable problems (Jones [197L4]), which correspond in computer science

to the incompleteness results of Gbdel and others in logic., Perhaps the
capstone to this research on computability is Matijasevic's 1970 proof,

building on earlier work by Martin Davis and Julia Robinson, that Hilbert's

tenth problem is undecidable (Davis, Matijasevic, and Robinson [197¢]).

Hilbert's tenth problem is to determine whether a given polynomial equation

has a solution in integers.

10

Two proof techniques, diagonalization and simulation, pervade

computability theory. Diagonalization is based on ancient self-reference
paradoxes; Cantor [187L4] used it to prove that there are more real number:
integers and G8del used it to prove his incompleteness result. One can
use it in the following way to devise an undecidable problem. Suppose
we are interested in yes-no guestions about the integers, such as "Is n
even?" or "Is n prime?" Suppose we have a listing Apy Ay Aysens of
all algorithms for answering such questions (for any of the standard
definitions of an algorithm it is easy to produce such a listing).
Consider the set S of integers such that n is an element of 5§ if
and only if algorithm An enswers "no" (or does not answer at all) on
input n . Then the question "Is n an element of S ?" is undecidable,
since each algorithm in the list Al’AT’AS"" produces a wrong
answer on at least one input (A“ is wrong on input n) and by Church’s
thesis this list contains all possible algorithms, Turing used the
same idea to show the undecidability of the halting problem for Turing
machines.

Simulation is a method for turning one problem or problem-solving
method into another, Once we have one undecidable problem Pl , we can
prove another problem b, undecidable by showing that if FC has an

algorithm then this algorithm can be used to solve F To accomplish

1.
this we provide an algorithm which converts an instance of problem T
into one or more instances of problem P2 » thus reducing Il to Pg
(or transforming Pl into P2) Similarly, to show that two definitions
of an algorithm are equivalent, we show how to simulate an algorithm

according to one definition by an algorithm according to the other

definition,

4
4
]
.
[

The development of general-purpose digital computers made possible

the implementation and execution of complicated algorithms, and the

4

theory of computability became a matter of more than mathematical
interest. However, this theory ignores questions of resource use, which
limits its power to identify what is possible in practice. Many problems
thich obviously have algorithms seem to have no good algorithms., For

instance, consider the maximum stable set problem: given a graprh, find in it

a maximum number of vertices, no two adjacent. Since a graph with n
vertices has only subsets of vertices, an exponential-time algorithm

for this problem exists. However no one has yet discovered a substantially

faster algorithm for this problem.

=0 =4
[Table 5.1]
Tables 3.1 and 3.2 illustrate the importance of this phenomenon
X I -
o} % o 3w o iBe AT Fan e defomimen A o it dTavne wraidela armand v oo
Table >+l estimates running times of algorithms with various tTime

bounds. The table show:s that constant factors become less and less
important as problem size increases; on large problems the asymptotic
growth rate of the time bound dominates the constant factor. The table
also shows that running time grows explosively if the time bound is
exponential. Table 3,2 estimates the maximum size of problems solvable
in a given amount of time. Increasing the amount of time (or the speed
of the machine) by a large factor does not substantially increase the
size of problems solvable unless the time bound grows more slowly than
exponential.

4

Tables 3,1 and 3.2 suggest a natural division between good algorithms

‘

(those with worst-case time bounds polynomial in the size of the input)

4

and bad algorithms. Edmonds [1915] was apparently the first to stress

distinction. I shall call a decidable problem tractable if it has a
polynomial-time algorithm and intractable otherwise. The distinction
between tractable and intractable problems is independent of the machine
model, since any of the commonly used machine models can be simulated by
any other with only a polynomial loss in running time. As Tables 1 and 2
show, it is not feasible to execute exponential-time algorithms on large
problems. Many combinatorial problems are easily solvable in exponential
time by exhaustively checking cases, but solving such problems in polynomial
time seems to require much greater insight. Most known good algorithms
have time bounds which are polynomials of small degree (u(n3) or better).
It is a major task of complexity theory to identify which natural problems
are tractable and which are intractable.

Hartmanis, Lewis, and Stearns took the first steps toward exhibiting
natural intractable problems (Hartmanis, Lewis, and Stearns [1965];
Hartmanis and Stearns [1965]). By diagonalizing over all algorithms with

a given space bound Sl(n) , they were able to obtain a problem solvable

in space Se(n) but not in space Sl(n) , for any space bounds Sl(n\ and
SQ(n) satisfying 1lim inf Sl(n)/sg(n) = 0 and a few other technical
n-—w

constraints. They proved a similar but somewhat weaker result for
time complexity. These results imply in particular that there are problems
solvable in exponential space but not in polynomial space, and problems
solvable in exponential time but not in pclynomial time.

Unfortunately, the intractable problems produced by diagonalization
are not natural ones. Meyer and Stockmeyer [1972] proved the

intractability of a natural problem. They showed that the problem of

determining whether two regular expressions with squaring denote the

-

same set requires exponential space (and hence exponential time)
for its solution. A regular expression is a formula constructed from
the symbols A, O, 1, U, *» ¥, (,) according to the following

rules. Each such formula denotes a set of strings of zeros and ones.

regular expression denoting the set {0} ;

O
e
1/2]
o

5-1
1 is a regular expression denoting the set ({1}
A is a regular expression denoting the set whose single element

is the empty string.

3,2 If A and B are regular expressions denoting sets L(A) and
L(B) , respectively, then
(AUB) is a regular expression denoting the set L(A) U L(B)

(A*B) is a regular expression denoting the set
{xy | xeL(A) and yeL(B)}.
A* is a regular expression denoting the set consisting
of the empty string and all strings formed by concatenating

one or more strings in L(A) .
Meyer and Stockmeyer added an additional rule:

3.5 If A is a regular expression, then A2 is a regular expression

denoting the same set as (A+A) .

To prove that the equivalence problem for two such exXpressions is
intractible, Meyer and Stockmeyer used simulation. They devised a

polynomial-time algorithm which, given a Turing machine, an input, and

an exponential space bound, would construct a regular expression

representing the computation of the Turing machine on the given input,

4

The expression is such that it denotes the same set as (OU

if and only if the Turing machine does not accept the input within the
given space bound. It follows that the equivalence problem for regular
expressions with squaring is as hard (to within a polynomial time blow-ug
as any yes-no question answerable in exponential space by a Turing machine.
Since the Hartmanis, Lewis, Stearns result implies that some problem
exists which can be solved in space 2" but not space 2%/n . the

juivalence problem for regular expressions must require exponential
gpace.

In the last five years, several more such results have been
1i scovered. Hunt [1973] showed that if set intersecti i Wwstituted for

squaring the equivalence problem for regular expressions still requires

xponential space. Stockmeyer and Meyer [1975] showed

[
~

cubtraction is substituted for squaring the equivalence j
regular expressions has a non-elementary space bound. Fischer and Rabin

1974] proved that testing the validity of a formula in Fre

arithmetic (the theory of natural numbers with + as the only operation]
cn

requires 2 space, for some positive constant ¢ . Cardoza, Lipton,

and Meyer [1976] showed that the word problem for Abelian groups requires

sxponential space. Jazayeri, Ogden, and Rounds [1975]

showed that testing the circularity of attribute gra

arising in programming language semantics) requires exponential time,

The idea in all these proofs is the same; one chows how to efficiently
convert any computation with a particular space or time complexity int
an instance of the given problem, and one appeals to the Hartmanis, Lewis,

Stearns results to assert the existence of an intractible problem with

15

3
v

he

particu

e or time complexity.

3 o~ ol A0 Vol
lar spac

Significantly, a number of apparently intractable problems, such as ;

|

the maximum stable set problem, are not included in the list of known '
intractable problems. These problems have the following property. : 4 }
such a problem is phrased as a yes-no question, and the answer is 'yes", H

then there

suppose we

is a polynomial-length proof of the answer. For instance,

rephrase the maximum stable set problem as follows: '"Does

a given graph G contain a stable set of k vertices?" If the answer
is yes, one can prove it by exhibiting the stable set and showing that
its vertices are pairwise non-adjacent.

To formalize this notion of polynomial-length proof, we introduce
non-deterministic machines. A non-deterministic machine may, at various
times during its computation, make a guess as to what to do next. The
machine accepts a given input if there exists some sequence of guesses
which causes the machine to eventually answer "yes". We define the time

(or space)
amount of t
non-determi
olynomial

-
J 4

[

are adjacent.

determinist

yes=no prob

question we wicsh to answer is,

72 but not
Cook

called 7P

~complete problems,
Al ol i

these vertices for adjacency.

required by the machine to accept an input as the minimum

ime (or space) used by an accepting computation. The following

nistic algorithm solves the maximum stable set problem in
time: First, guess a subset of k vertices. DNext, check all

Accept if no two of the vertices

Let P denote the class of yes-no problems solvable
ically in polynomial time and let 7P denote the class of

lems solvable non-deterministically in polynomial time. The

"Are there natural problems which are in

on

in p

[1971]) showed that NP contains certain "hardest™ problems,

A problem P is 7P ~-complete if

16

-

it satisTies two properties:

S e U T T I

N

3,5 If Q is in MNP then Q@ is reducible to P in polynomial time.

To say that Q is reducible to P in polynomial time means that
there is a (deterministic) polynomial-time algorithm which, given an
instance of problem @Q , will convert it into an instance of problem P ,
such that the answer to the instance of Q is "yes" if and only if the
answer to the instance of P is "yes". If Q 1is reducible to P in
polynomial time and P has a polynomial-time algorithm, then so does Q .
Thus if any 7N -complete problem has a polynomial-time algorithm, P = 7.

Cook's main result was to show that the satisfiability problem of
propositional calculus is 7P -complete, The satisfiability problem is to
determine whether a given logical formula is true for at leact one
assignment of the values "true" and "false" to the variables., It is easy
to show that this problem satisfies 3.4. Cook proved 3.5 by giving a
polynomial-time algorithm for constructing, from a given non-deterministic
Turing machine, a given input, and a given polynomial time bound, a logical
formula such that the formula is satisfiable if and only if the Turing
machine accepts the input within the time bound.

If one knows a single problem P to be 7N -complete, one can prove
another problem @Q NP -complete by showing that Q dis in 7%y and that P
is reducible in polynamial time to Q ; property 3.5 then follows from the
transitivity of polynomial-time reducibility. Karp [1972] used this
idea to exhibit a number of natural 7P -complete problems. Others

continued this work, and the number of known N -complete problems is

17

-

now in the hundreds (see for instance Even, Ttai, and Shamir [1976];
Garey, Johnson, and Stockmeyer [1976]; Garey, Johnson, and Tarjan [1976];
Karp [1975]; Sahni [197k]; Sethi [1975]; and Ullman [1973]). In addition

+

to the satisfiability problem and the maximum stable set problem, the

following problems are 9y -complete,

Subgraph isomorphism (Cook [1971]). Given two graphs G, and G, , is

G, isomorphic to a subgraph of G, ?
i 2

Graph coloring (Karp [1972]). Given a graph G , can its vertices be

colored with k colors so that no two adjacent vertices have the same
color? This problem is 7P -complete even if k =3 and G is
planar (Garey, Johnson, and Stockmeyer [197¢]), whereas it follows
from Appel and Haken's proof of the four color conjecture (Appel and

Haken [1977]) that there is a polynomial-time algorithm to color any

planar graph with four colors.

Hamilton cycle (Karp [1972]). Given a graph G does it contain a cycle

which passes through every vertex exactly once? This problem is a
special case of the travelling salesman problem (see Section 4). It

is 7P -complete even if G is planar (Garey, Johnson, and Tarjan [1976]).

Subset sum (Karp [1972]). Given a set of numbers Nysfayeeeyhy, and e

)
1]
&
4]

-

does some subset of the numbers sum to exactly s ?

Maximum planar subgraph (Liu and Geldmacher [1976]). Given a graph G , does

it contain a planar subgraph with at least k edges?

A major open problem of complexity theory is to determine whether p = 71p. '
A natural approach to this problem would be to try using diagonalizati
exhibit a problem in 7 but not in @ . However, recent work by Baker,
Gill, and Solovay [1975] suggests that diagonalization is impotent for

18

resolving the @ = 7P ? question. FEven without a proof that p = ¢,
it is still fruitful to add new natural problems to the list of

NP -complete ones; the large amount of time spent by bright people
fruitlessly searching for polynomial-time algorithms for NP -complete
problems is strong evidence that the 7@ -complete problems are in fact

intractable.

19

-

L, Technigues for Good Algorithms.

Although many important combinatorial problems seem to be intractable,
many others have good algorithms. A small number of data manipulation
techniques form the basis for these algorithms. This section examines
these techniques, which are outlined in Table L.1.

[Table L.1]

Data Structures.

Any algorithm (good or bad) requires one or more data structures to

represent the elements of the problem to be solved and the information
computed during the solution process. A data structure is a composite

object composed of elements related in specified ways. Associated with

the data structure is a set of operations for manipulating its elements.
Once a good implementation of a given data structure and its operations
is known, one can regard the operations as primitives when implementing
any algorithm which uses the data structure. The efficiency of the
algorithm will depend to a large extent upon the implementation of the
underlying data structure.

There are two data structures upon which all others are based:

arrays and linked structures. An array is a collection of storage

cells numbered consecutively. Two operations are associated with an
array: given the number of a storage cell, one can either store a value
in the storage cell (destroying the current value) or retrieve the current
value from the storage cell. The memory of a random access machine and

>f most digital computers is an array. One can use arrays to represent

vectors, matrices, tensors, and multidimensional arrays (Knuth [1968]).
20
;
- —_——. . . - e e

-

A linked structure consists of a collection of records. h record
divided into a number of jitems, each with an identifying nane. The
structure of all records is identical. Ttems are of two kinds, data

items and reference items. Data items contain data. Reference items

contain pointers to records. Two operations are possible on a linked
structure; given a pointer to a record, one can either store a wvalue
nto gn item in the record or retrieve the current value from an item
in the record. Figure 4.1 illustrates a linked structure. Whereas
irray addresses are integers capable of being manipulated by arithmetic
>perations, no operations are allowed on linked structure pointers

sxcept storage, retrieval, and testing for equality. The memory

inked memory machine is a linked structure, and

processing languages can be regarded as operating on linked structures.
[Figure L.1]

It is easy to implement arrays and linked structures so that
storage and retrieval require constant time. Linked structures can be
implemented as collections of arrays (see Figure 4.1); this makes list-
processing easy in languages such as FORTRAN which do not jossess an
explicit list-processing facility. It seems to be impossible to implement
an array as a linked structure in such a way that storage and retrieval
take constant time, though I know of no proof of this fact.

Using arrays and linked structures, one can implement many different
dats structures. I shall consider here five classes of data structures:
lists, unordered sets, ordered sets, graphs, and trees,

A list is a sequence of elements. The first element of a list is
its head; the last element is its tail. Simple operations on a list

include scanning the list to retrieve its elements in order, adding an

B2l

e e —— il -s";h-;==.-.-....'===:: - - a .

element as the new head of the list (making the old head the second
element); adding an element as the new tail, deleting and retrieving

the head of a list, and deleting and retrieving the tail of a list.

Lists on which only a few of these operations are possible have special
names. A stack is a list with addition and deletion allowed only at the
head. A gueue is a list with addition allowed only at the tail and
deletion allowed only at the head. A deque (double-ended queue) is a

list on which addition or deletion is possible at either end. One can
implement a deque either as a circular array (addresses are computed
modulo the size of the array) or as a singly linked structure (if deletion

from the tail is not necessary). See Figure 4.2. 1In either case, all

operations except scanning require constant time. The array representation

uses no space for storing pointers but requires that an amount of storage
equal to the maximum size of the list be permanently allocated to the list
[Figure 4.2]

Other important list operations include concatenating two lists
(making the head of the second list the element following the tail of
the first), inserting an element before or after an element whose location
in the list is known, and deleting an element whose location in the list
is known. These operations require a linked structure for their efficient
implementation. A singly linked structure is sufficient for concatenation
and for insertion after another element. Insertion before another element
and deletion require a doubly linked structure. See Figure L.3. An
alternate way to handle deletion is to provide each element with a flag
which is set to "true" if the element is to be deleted. The element is
not explicitly deleted until the next scan through the list.

(Figure L.3]

22

.

The list operations hardest to implement are inserting an element
at the k-th position in a list, retreiving the element at the k-th position
in a list, or deleting the element at the k-th position in a list., It is
possible to implement these operations to run in 0(log n) time, where n
is the size of the list, by using AVL trees (Knuth [1973]) or 2-3 trees
(Aho, Hopcroft, and Ullman [197L4]), which are rather complicated linked
structures. Recently Guibas, McCreight, Plass, and Roberts [1977] have
found a way to carry out these operations in 0(log k) time.

An unordered set is a collection of distinct elements with no imposed
relationship. Basic set operations are adding an element to a set,
deleting an element from a set, and testing whether an element it in a
set. One way to represent a set is by a singly linked list. Addition
requires constant time but testing and deletion require O(n) time, where
n 1is the size of the set. Alternatively, if the elements of the set are
values which can be compared and sorted, one can represent the set by an
AVL tree or a 2-3 tree in such a way that all three operations require
0(log n) time (Knuth [1973]; Aho, Hopcroft, and Ullman [197L4]).

Mother way to represent a set is by a bit vector (Aho, Hoperoft, and
Ullman [197L4]), which is an array with one storage cell for each possible
element., A storage cell has two possible values: true, indicating that
the set contains the element, and false, indicating that it does not. All
three operations require constant time using this representation. Bit vector
representation is only feasible if the number of possible elements is small.

If the number of possible elements is large, one can mimic the behavior
of a bit vector by using a hash table (Knuth [1973]). A hash table consists

of a moderately sized array and a hashing function which maps each possible

23

element into an arrasy address. If an element is present, the element
(or a pointer to it) is stored at (or near) the address specified by the
hashing function. Since two or more elements may hash to the same address,
some mechanism must be provided for resolving such collisions. Hash tables
are used extensively in compilers, and many papers have been written about
them (see Knuth [1973], Morris [1968]). With a hash table, addition,
deletion, and testing require O0O(n) time in the worst case but only
constant time on the average.

Additional set operations are useful if two or more sets exist. These

include the ability to form a set which is the union, intersection, or

difference of two sets. For most representations union, intersection,
and difference require time proportional to the sum of the sizes of the

sets. However, if the universe of elements is small enough so that a bit

vector can fit into a few computer words and the computer possesses bit
vector operations, then union, intersection, and difference require constant
time,

An ordered set is a collection of elements, each with an associated
numeric value. Two important operations on ordered sets are sorting the
elements in increasing order and selecting the element with k-th largest *
value. A variety of ways exist to sort n elements in 0O(n log n) time
(knuth [1973]); if binary comparisons are the only operations used to
manipulate the values then Q(n log n) time is required in both the average
and the worst case to sort (Knuth [1973]). Selecting the k-th largest
element requires O(n) time (Blum, Floyd, Pratt, Rivest, and Tarjan [1973]:
Schbnhage, Paterson, and Pippenger [1975]).

A priority queue is an ordered set on which the following operations

are allowed: adding an element to the queue, retreiving the minimum-value

element in the queue, and deleting an element whose location is known
from the queue. By using binomial trees (Vuillemin [1977], Brown [1977]),
* leftist trees (Knuth [1973]), or 2-3 trees (Aho, Hopcroft, and Ullman
[1974]) one can implement priority queue operations so that they require
0(log n) time, where n is the size of the queue, These implementations
also allow one to combine two queues into a larger queue (destroying the
smaller queues) in 0(log n) time.
If the values of the elements in an ordered set are integers of
moderate size, then the ordered set operations can be speeded up. Using
a k-pass radix sort, one can sort n integers in the range 1 to mk
in O(km+n) time (Knuth [1973]). Peter van Emde Boas has devised a
method for implementing priority queues with integer values in the range
E 1 to n so that the queue operations require O0(log log n) time
(van Emde Boas, Kaas, and Zijkstra [1975]).
A graph is a set of vertices and a set of edges, each edge a pair

of vertices. One way to represent a graph is by a two-dimensional array A ,

called an adjacency matrix. The value of A(i,j) is one if (i,J) dis an

edge of the graph; otherwise the value of A(i,j) is zero. An alternate

way to represent a graph is by an adjacency structure, which is an array

of lists, one for each vertex. The list for vertex i contains vertex jJ
if and only if (i,j) is an edge of the graph. See Figure L.L.
[Figure L4.L4]

The adjacency matrix representation saves space if the graph is dense
(i.e., most possible edges are present); it also allows one to test the
presence of a given edge in constant time. However, Anderaa and Rosenburg
conjectured (Rosenberg [1973]) and Rivest and Vuillemin [1975] proved that

testing any non-trivial monotonic:/ graph property requires Q(ng)

2

~/7A graph property is non-trivial if for any n the property is true for
some graph of n vertices and false for some other graph of n vertices.
A graph property is monotone if adding edges to a graph does not change
the property from true to false,

25

probes of the adjacency matrix in the worst case, where n is the number
" vertices in the graph. By using an adjacency structure, one can search
a graph in O(n+m) time, where m is the number of edges in the graph;
thus representation by an adjacency structure is preferable for sparse grarhs.
A tree is a graph without cycles. Since a tree is a graph it can be
represented by an adjacency structure. A more compact way to represent
a tree is to choose a root for the tree, compute the parent of each vertex
with respect to this root, and store this information in an array
(Figure 4.5). This representation is usable as long as the tree is to
be explored from leaves to root, which is often the case in problems

involving trees.

[Figure L.5]

An important and very general algorithmic technique is recursion.
Recursion is a method of solving a problem by reducing it to one or more
subproblems. The subproblems are reduced in the same way. Eventually
the subproblems become small enough that they can be solved directly. The
solutions to the smaller subproblems are then combined to give solutions
to the bigger subproblems, until the solution to the original problem is
computed. As a simple example of a recursive algorithm, consider the

following definition of the n-th Fibonacci number:

0 F(n) := if (n=1) or (n=2) then 1 else F(n-1) + F(n-2) .
Using recursion, one can often state algorithms much more simply

than would be possible without recursion. Many programming language:,

including Algol, PL/1, and LISP, allow recursive procedure: (procedures

which call themselves). In a language without this facility, such as
FORTRAN, one can implement a recursive algorithm by using a stack to
store the generated subproblems (Aho, Hopcroft, and Ullman [197L]).

Dynamic programming (Bellman [1957]) can be viewed ac a special kind

of recursion in which one keeps track of the generated subproblems and

never solves the same problem twice. As an example of the work which can

be saved in this way, consider the computation of the n-th Fibonacci

number. A recursive procedure based on 4.l requires time proportional

to the size of F(n) to compute F(n) ; such a procedure performs

F(ntl-i) computations of F(i) for each i in the range from 1 to n .

A better way to compute F(n) is to compute each F(i) just once for

each value of i . The most efficient way to implement a dynamic programming

algorithm is to set up a table of solutions to all subproblems, and to fi

r' in the table from smallest to largest subproblem. Sometimes one can
discard the solutions for small subproblems as the computation proceeds
and re-use the space for larger subproblems. One can evaluate F(n) in
0(n) time with two storage locations by using this idea. Of course,
using a closed-form expression for F(n) results in an even faster

camputation.)

Dynamic programming has been used with great success on a number of

combinatorial problems, including shortest path problems (Floyd [19¢2]),
context-free language parsing (Younger [1967], Earley [1970]), error
correction in context-free languages (Aho and Peterson [1972]), and

construction of optimum binary search trees (Knuth [1971], Itai [197¢]).

Graph Searching.

Most graph problems require for their solution a systematic method
of exploring a graph. A search is an examination of the edges of a graph

using the following procedure.
; 27

alization): Mark all edges and vertices of the graph new

Step 2 (choose a new starting vertex): If no new vertex exists, halt.
L -—

(The entire graph has been explored.) Otherwise, choose a new

vertex and mark it old (explored).
Step 3 (explore an edge): If no new edges lead away from old vertices,

{ go to step 2. (A1l of the graph reachable from the current start
vertex has been explored. therwise, choose a new edge leading

away from an old vertex. Mark the edge old. If the other endpoint

> the edge is new, mark it old. Repeat step 3.

Assume for simplicity that all vertices in the graph to be searched
are reacheable from the first start vertex selected in step 2. Then the
search generates a spanning tree. The root of the spanning tree is the
start vertex. The edges of the spanning tree are the edges which lead to
new vertices when explored in step 3. The properties of the spanning tree
iepend upon the criteria used to select the starting vertex in step 2 and

the edges to explore in step 3. For some simple graph problems, such as

finding connected components (Hopcroft and Tarjan [1973c]), any order of
exploration is satisfactory. However, for harder graph problems the
exploration order is crucial.

In a depth-first search, the edge selected in step 3 is an edge out

of the last explored vertex with candidate edges. If a depth-first search
is performed on an undirected graph, the generated spanning tree has the
property that all non-tree edges connect vertices related in the tree
(Tarjan [1972]). ©See Figure 4.6, If such a search is performed on a
directed graph and the vertices are numbered from 1 to n as they are

marked old, then no non-tree edge leads from a vertex to a vertex which is

28

b=

both higher numbered and unrelated in the spanning tree (Ta
See Figure L4.7. A depth-first search can be implemented as a recurcive
¥ procedure or with an explicit stack to store the old vertices.
s]
[Figure 4.
v e 73
[Figure L,

4

In a breadth-first search, the edge selected in steg

out of the first explored vertex with candidate edges.

partitions the vertices into levels depending upon their distance fr

the start vertex. In an undirected graph each edge connect

the same level or in two adjacent levels:; in a directed graph, 1 edg:
leads from a level to a level higher than the next level. See Figur i
A breadth-first search can be implemented using a queue to stor
:
vertices.
[Figure L.8]
Both depth-first and breadth-first search, if properly implemented
using an adjacency structure to store the graph, require (n+m time t
explore an n-vertex, m-edge graph. Although these are the most important
search methods, several others, including topological search (Knuth [19)s
lexicographic search (Sethi [1975]; Rose, Tarjan, and Lueker [197¢]), ar
shortest-first search (Dijkstra [1959], Johnson [1977]), are occasionally
useful,
1
Optimization Methods.
A large class of problems requires the maximization of a function
defined on a graph with weighted edges. It is usually possible to phrase
these problems as linear or integer programming problems (Dantzig [193],
Nemhauser and Garfinkel [1972]), but better algorithme than general-purpoce
/
1 29

linear or integer programming methods are available for their solution.

These algorithms use two techniques, greed and augmentation., The most

general setting for these techniques is in matroid theory (Lawler (1976]),
but one can understand and apply the techniques to graph problems without
knowing about matroids.

Consider the problem of finding, in a set with weighted elements, a
maximum-weight subset satisfying certain additional constraints. The

following greedy method might be useful in solving this problem. Sort

the elements by weight. Examine the elements in order, heaviest to
lightest, building up a subset element-by-element. When examining an

element, add it to the subset if some extension of the subset satisfies

the constraint. Otherwise throw the element away. The resultant subset
certainly satisfies the constraint. Unde:r appropriate conditions, the
subset will be of maximum possible weight. One problem to which this

method is applicable is the minimum spanning tree problem (Kruskal [1956],
Prim [1957], Dijkstra [1959], Yao [1975], Cheriton and Tarjan [1976]).
Even if the greedy method does not produce optimal solutions, it may
produce solutions which are close to optimal (Garey and Johnson [1976]),
and it is usually easy to implement and fast.

In situations where the greedy method doesn't work, a method of
iterative improvement sometimes does., The idea is to start with any
solution to the constraints and look for a way to augment the weight of
the solution by making local changes. The new solution is then improved
in the same way, and the process is continued until no improvement is
possible, Under appropriate conditions such a locally maximal solution
is also globally maximum., Even if the solution is not guaranteed to be

maximum, the augmentation method may be a good heuristic; for instance,

30

—

-

Lin [1965] has applied it with good results to the travelling salesman
problem., The travelling salesman problem is to find a shortest cycle
through all vertices of a graph with distances on the edges. The
Hamilton cycle problem, a special case of the travelling salesman problem,

is NP -complete,

Data Updating Methods.

Some problems require more sophisticated data manipulation thuan is
possible with the simple data structures discussed early in this section.
Three advanced techniques have been devised for dealing with three diverse
problems which require dynamic updating of data. These techniquec are

path compression, partition refinement, and linear arrangement.

Path compression is a method of solving the following problem.
Consider a universe of elements, partitioned initially into singleton
sets. Associated with each element is a value., We wish to be able to

carry out the following operations on the sets.

Union: Combine two sets into a single set, destroying the old
sets.
Update: Modify the values of all elements in a given set in a

consistent way.

Evaluate: Retrieve the value associated with a given element.

A situation of this kind occurs in the compilation of FORTRAN COMMON and
EQUIVALENCE statements (Galler and Fischer [196L]) and in several other
combinatorial problems (Tafjan [1975b]). The set union problem to be

discussed in Section 5 is the simplest such problem. Galler and Fischer

[1964] proposed an algorithm for this problem using trees as a data

structure, McIlroy and Morris confronted the set union problem when trying
to compute minimum spanning trees and proposed an improved method using
path compression on trees (sho, Hopcroft, and Ullman [1974]). Their method,
which is very simple to program but very hard to analyze, generalizes to a
number of other problems (Tarjan [1975b]). I shall discuss this method
and its remarkable running time in Section 5.

Another problem involving disjoint sets is the following. Suppose

the vertices of a graph are initially partitioned into several subsets.

We wish to find the coarsest partition which is a refinement of the given
partition and which is preserved under adjacency, in the sense that if two
vertices v and w are contained in the same subset of the partition,
then the sets A(v) = {x| (v,x) is an edge} and A(w) = {x| (w,x) is an edge}
intersect exactly the same number of times with each subset of the partition,
This adjacency-preserving partition is easily computable in O(nm) time.
Hopcroft [1971] devised a more sophisticated algorithm which runs in
O(m log n) time. Gries [1973] gives a nice description of this algorithm,
Partition refinement ic useful in solving the state minimization problem
for finite automata (Harrison [1965]) and in testing graphs for isomorphism
(Corneil and Cottlieb [1970]).

A third problem requiring a good data updating method is the linear

arrangement problem: Given a set of n elements and a collection of

subsets of the elements, can the elements be arranged in a line so that
each subset occurs contiguously? This problem arises in biochemistry
(Benzer [1959]) and in archaeology (Kendall [1969]). Booth and Lueker
[1976]) have devised a method of solving this problem in O(n+m) time,
where m is the total size of the subsets, using a data structure they

call a P-Q tree,

32

Graph Mapping.

There are two methods of solving graph problems, decomposition and
shrinking, which are related to the algebraic concepts of subalgebra and
homomorphism. One way to solve certain graph problems is to decompose the
graph into several subgraphs, solve the problem on the subgraphs, and
combine the solutions to give the solution for the entire graph. In most
instances where this technique is useful, the subgraphs are components
(maximal subgraphs) satisfying some connectivity relation. 1In order to
apply the technique, one must know an efficient way to determine the
components. Good algorithms exist for a variety of connectivity problems
(Tarjan [1972], Hopcroft and Tarjan [1973a], Hopcroft and Tarjan [1973c],
Pacault [1974], Tarjan [197ka], Tarjan [1975c]).

Another way to solve some graph problems is to shrink part of the graph
to a single vertex, solve the problem on the shrunken graph by applying
the idea recursively, and from this solution compute the solution on the
original graph. The shrinking operation corresponds to taking a homomorphic

image of the graph. Generally the part of the graph to be shrunk is a

cycle or a union of cycles.

-

Fa Ten Tractable Problems,

There are hundreds of combinatorial problems for which good algorithms
are known. This section examines ten such problems. I have selected the
problems on the basis of their importance, the range of techniques they
require, and my familiarity with them., The list is not meant to be exhaustive
but to be representative of problems with good algorithms. Table 5.1
lists the problems and the techniques used in the best algorithms for themn.
Figure 5.1 shows improvements in solution time achieved recently for
these problems.

[Table 5,1]

[Figure 5.1]

Discrete Fourier Transform.

Given an n-dimensional vector (ao,al,...,an l) , the discrete Fourier

transform problem is to compute the vector (bo,bl,...,bn_l) given by

n-1 :]
bk = 2, aiwlk , where w ,w ,...,wn-l are the (complex) n-th roots of
1=0

ne. This problem arises in signal processing. An algorithm for the
discrete Fourier transform is useful as a subroutine in various arithmetic
and algebraic problems, including polynomial evaluation and interpolation
and integer and polynomial multiplication (Knuth [1969], Aho, Hopcroft,
and Ullman [1974], Borodin and Munro [1975]).

It is straightforward to compute the discrete Fourier transform in
o(ncﬁ time. Cooley and Tukey [1265] popularized an Ofn log n) -time

method, called the fast Fourier transform. They were not the first to use

the method, which originated at least as early as Runge and K¥nig [192L].

The fast Fourier transform useg recursion to cut down the amount of

3l

camputation. Recently Winograd [1975, 1976] proposed a method for
computing the discrete Fourier transform using only O(n) multiplications.,
This method may be superior to the fast Fourier transform in practice,
although Winograd has not analyzed the overall running time of his

algorithm,

Matrix Multiplication.

Given two nxn matrices, the matrix multiplication problem is to
determine their matrix product. The standard high school method of
matrix multiplication requires O(n5) time. Strassen [1969] devised a
way to multiply two 2x2 matrices with only seven multiplications, and

used this in a recursive matrix multiplication algorithm requiring only

log, 7
On <) time. This surprising result has acted as a stimulus for

mcuh research in the complexity of algebraic problems. No one knows
whether Strassen's algorithm is improvable., Strassen's algorithm has

been used to compute transitive closures of graphs (Munro [1971], Fischer
and Meyer [1971]) and to do context-free language parsing (Valiant [1975a])

2.81 :
s==) Eime,

in 0(n
A problem related to matrix multiplication is the shortest path
problem. Given a directed graph with positive edge distances, the single

source shortest path problem is to find the minimum distance from a given

vertex to every other vertex. The all pairs shortest path problem is to

find the minimum distance between all pairs of vertices., Dijkstra [1959]
devised an algorithm for the single source problem which requires either
o(ng) time or O(m log n) time depending upon the implementation, where
n is the number of vertices and m the number of edges in the graph

(Johnson [1977]). Floyd [1962] gave a way of solving the all pairs problem

j = . T i. e . I . — o e— "L

in 0O(n”) time., Fredman [1976] showed that the all pairs problem can

I‘\l/'?:\

Y B -) -
be solved using 0(n"~°”) comparisons and only O(n” (log log n/log

(s
time total. Avis, Rivest, and Yao [1977] proved that at least ((n~ log n

comparisons are reguired in the worst case to solve the zll pairs problem,
This lower bound is one of the few known for a tractable combinatorial

problem,

Linear Equations on a Planar Gragph.

Suppose A is an nxn matrix, b is an nyxl vector of constants
X is an nyxl +vector of varisbles, and we witch to solve the system
equations Ax = b , A standard method for deing this is Gaussian
elimination (Forsythe and Moler [1967], Tewarson [1973]). First, the

matrix A is decomposed into a product of two matrices, A = LU , such

that L is lower triangular (i.e. L has no non-zero entries above the
2

diagonal) and U is upper triangular (i.e., U has no non-zerc entries

below the diagonal). Then Ax = b is solved in two steps, by solving

Iy = b , called frontsolving, and solving Ux = y , called backsolving.

Because L and U have special forms, frontsolving and backsolving are
very efficient; the slowest part of Gaussian elimination is the first
step, decomposing A into LU .

The decomposition of A proceeds by means of row operations. A row

operation consists of adding a multiple of one row of A to another row
of A . If the multiple is chosen correctly, the modified row will have

a zero in a previously non-zero position. By systematically applying

such row operations, one can transform ..e original matrix A into

upper triangular matrix U ; the row operations performed define a lower

triangular matrix L such that LU = A .

If A 1is originally a dense (mostly non-zero) matrix, then LU

2

2 3 : 3 .
decomposition requires O(n space and O(n”) time, and frontsolving

)
Y and backsolving require O(nz) time. In many large systems of equations,
however, the matrix A is sparse. For a sparse matrix, the time and
storage space required by Gaussian elimination depend in a complicated
way upon the zero-non-zero structure of the matrix. In particular, a
row operation may introduce new non-zeros (called fill-in) into positions
originally zero. It is desirable to rearrange the matrix A by means
of row and column permutations so that the fill-in and running time of

Gaussian elimination are reduced.

For this purpose it is useful to represent the zero-non-zero structure

~

of A by a graph G . The graph contains one vertex for each row and
" A and one edge (i,j) for each non-zero entry (i,j) in A .

If A is symmetric, G dis undirected; if A is unsymmetric, G is
directed. The graph G represents A and all matrices formed by
simultaneously permuting rows and columns of A . By studying the properties
| of G, it may be possible to find a reordered version of A such that
Gaussian elimination is efficient. (It is necessary to know that the

permutations do not destroy the numeric stability of the elimination

process. 1 shall ignore this issue here; see Forsythe and Moler [1967],
Tewarson [1973].)

Parter [1961] was one of the first to suggest the usefulness of this
approach. The idea has been extensively developed. For general results
concerning the relationship between Gaussian elimination and grarh theory,
see Rose [1970]; Harary [{1971]; Rose [1973]; Rose, Tarjan, and Lueker
[1976]; Duff [1976]; and Rose and Tarjan [1977].

[Figure 5.2]

; 37

As an example of the improvement possible by taking advantage of
sparsity, consider the graph in Figure 5.2. Such a kxk grid graph

arises in the numeric solution of differential equations. Ordinary

- !
dense Gaussian elimination requires 0(n”) space and O(nj\ time on
D

such a matrix, if n = k~ . The bandwidth scheme of sparse elimination

%/2)

reduces the space to 0O(n”’ and the time to 0(n") (Cuthill and

McKee [1969], Tewarson [1973]). George [1973] discovered an even better

d, called nested dissection, which requires O(n log n) space and

)(n' ") time, Hoffman, Martin, and Rose [1973] showed that, to within
a constant factor, nested dissection requires the least fill-in and
computing time of any ordering scheme for Gaussian elimination on kyxk

grid graphs.

Nested dissection is a recursive method which uses the fact that a
(2k+1) x (2k+1) grid graph consists of four kxk grid graphs and the
Lk+1 -vertex boundary between them (Figure 5.2). Many sparse matrices

icht

which arise in practice do not have such a nice structure, and one might
ask whether nested dissection has any natural generalization, Recently
Lipton, Rose and Tarjan (Tarjan [1970b]) discovered a wey to extend nested
dissection to arbitrary planar graphs so that the storage space is still

3/2,

O(n log n) and the running time still O(n . Such graphs arise in

two-dimensional finite element problems (Martin and Carey [1973]).

Global Flow Analysis.

Systems of linear equations arise in contexts other than linear
algebra, For instance, the shortest path problem can be formulated as a

1aition

system of equations, with minimization replacing addition and ac

replacing multiplication (Backhouse and Carré [1975]). Another situation

where systems of linear equations occur is in the global flow analysis

of computer programs. Suppose, for instance, that we wish to modify a

computer program so that it does not recompute an expression unless the
value of one of the variables in the expression has changed.

The first step in the analysis is to represent the program by a
flow graph. FEach vertex in the flow graph represents a basic block of
the program (a set of program statements having a single entry point and
a single exit point). FEach edge in the flow graph represents a transfer
of control from one basic block to another. The problem of determining,

for each basic block, the set of available expressions (those which do

not need to be recomputed) can then be formulated as a system of linear
equations with one variable for each basic block. The variable is a bit
vector, with one hit corresponding to each program expression, and
appropriate bit vector operations replace addition and multiplication in
the system of equations. The sparsity structure of the matrix corresponds
to the flow graph representing the program. For further details of this
correspondence, see Kildall [1973], Schaefer [1973], and Allen and Cocke
[1976].

One can use standard Gaussian elimination techniques to compute
available expressions, but it is often useful to take advantage of
sparsity. The flow graphs of many computer programs have a special
property called reducibility, which means in essence that every cycle has
a single entry point from the starting block of the program. Allen [1970]
and Cocke [1970] first formulated this notion of reducibility, presented
an O(nm) -time algorithm to test for reducibility, and used this test in

an O(nm) -time algorith<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>